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FOREWORD

The investigation reported herein is part of the research project at
The Ohio State University, Columbus, Ohio supported by the Air Force Of-
fice of Scientific Research Grant 83-0055. Lt. Col. John J. Allen was
the Program Manager at the commencement of the project. Lt. Col. Law-
rence D. Hokanson was the Program Manager from July 1, 1983 onwards.
The research project was started Feburary 1, 1983 and is continuing.
The present report documents part of the work done up to January 31,
1984, At The Ohio State University, the project is supervised by Dr.
Ranbir S. Sandhu, Professor, Department of Civil Engineering. The com-
puter program modification were carried out by Or. Baher L. Aboustit,
Post-doctoral Reseach Associate. The analyses reported herein were
started by Dr, Aboustit and completed by Mr. Soon-jo Hong, graduate stu-
dent, who also prepared the documentation on the Ohio State University
Computer System. The Instruction and Research Computer Center at The

Ohio State University provided the computational facilities.
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ABSTRACT

The transient response of saturated porous soils to time dependent
boundary conditions is analyzed. Galerkin finite element method is used
to set up the spatial discretization of Biot's equations of wave propa-
gation through linearly elastic fluid-saturated porous medium. Wilson's
B-v-0 algorithm is used to integrate the equations of motion. The proce-
dure is

applied to several one-dimensional steady state and transient

problems. Excellent agreement with the analytic solution was obtained
with 'proper' selection of time-integration parameters. There is appar-

ent need for developing reliable time-integration procedures.

- iii -
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SECTION I
INTRODUCTION

Biot (2,3) developed the field equations for propagations of waves
through fluid-saturated elastic porous media. Lagrange equation of mo-
tion was set up assuming the existence of a dissipation function in
terms of the relative velocity of the two constituents. By assuming the
existence of a strain energy density function for the mixture, the equa-
tions of motion were written in terms of the displacements of the solid
and the fluid. Hsieh and Yew (13) combined the theory of mixtures and
Biot's assumption that the fluid acts over the pore space, to provide
similar equations to Biot's equation (3) but with variable porosity.
Garg (10) extended the theory to elastic-plastic soils. Ishihara (15)
examined Biot's work in terms of physical constants which are related to
the compressibilities of individual constituent materials. Prevost (17)

assumed Newtonian fluid behavior and the soil to be elasto-plastic.

Most analytical solutions for the initial boundary value problem of
wave propagation through saturated porous media provide only the harmon-
ic component of the solution. Deresiewicz (6,7) obtained solution for
the reflection of plane waves (2) and Love waves at a free plane. Zienk-
iewicz et al.(24) obtained the solution for a half space subjected to
harmonic tractions. Garg et al.(ll1) presented the exact transient as
well as the steady state solutions for compressional wave propagation

through a porous elastic solid and developed finite difference proce-
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dures for numerical solution. Chakroborty and Dey (4) obtained the so-
lution for Love waves in saturated media underlain by heterogeneous

elastic media,

Although the finite element method has been extensively used for
analysis of quasi-static consolidation problems, e.g. Sandhu (21), its
application to the dynamic response of saturated soils is still in its
infancy. Ghaboussi and Wilson (12) used Sandhu and Pister's {19) ap-
proach to construct a variational principle, of the Gurtin type, equiva-
lent to Biot's (3) field equations including initial as well as boundary
conditions. This variational principle was the basis for a finite ele-
ment discretization, in which the Gurtin type approach was replaced by
the B- Y - 6 method for the time-domain integration. In the spatial
discretization, a one-dimensional element was used with nodal values of
the solid displacement and the relative displacement of the fluid as
generalized coordinates. The problem of a soil layer subjected to unit
step loading was analyzed. The problem was solved by two methods based
on lumped mass and on consistent mass, respectively. Waves appeared to
propagate faster when consistent mass formulation was used. This was
ascribed to inertial coupling in this formulation. Ghaboussi and Wilson
(12) did not present any comparison with exact solution. Garg (11) con-
sidered this unsatisfactory as the results from the two approaches dif-
fered consic..ably. Prevost (17) used the Galerkin approach for spatial
discretization and Hughes' (14) implicit-explicit algorithm for time do-
main integration. Bilinear four noded isoparametric elements were used
with nodal point values of displacement of the solid and the fluid as

the unknown parameters. Assumption of Newtonian fluid behavior lead to
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nonsymmetric damping matrices. Two-dimensional analysis was actually
F used to solve a one-dimensional problem with finite length. For rela- -4

tively large permeability, Prevost compared his results with the exact

E, solution for a solid with no pores. This was incorrect because non-po-

rous solid represents a strong coupling, while a material with high

permeability is weakly coupled (11).
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The purpose of this investigation was to develop an effective finite

element computer program based on the Biot's theory and evaluate it

against available analytical solutions. A Galerkin approach was used to B
_ set up the semi-discrete matrices spatially and the 8-y - 6 algorithm is “:i;
used for the time domain integration. Nodal values of the solid dis- -é
placement and relative displacement of the fluid with respect to the ;{5
solid skeleton are used as the unknown quantities. A computer program ;

was written to handle one-dimensional as well as plane-strain problems. -

- One-dimensional linear element and four node and eight node isoparame- o
tric two-dimensional elements were used. The development is essentially ij!

’ similar to Ghaboussi and Wilson's (12). The program was applied to nu-

merical solution of several one-dimensional problems for quasi-static as ;i;%
well as dynamic problems for which exact solutions are available. The f:;

E? results showed excellent agreement between the approximate and the exact -:
: solution. .;i?
é; _J%
SECTION II summarizes the governing field equations following Biot ’fj

(3). The finite element development is given in section III. SECTION IV _Zf

describes the example problems. Results of the numerical solution proce- i;

(

¢ dures are evaluated in SECTION V. :




SECTION II

FIELD EQUATIONS GOVERNING DYNAMICS OF FLUID-SATURATED
ELASTIC SOILS

Biot's (3) equations of motion for an elastic porous medium saturated
with a compressible fluid may be written in standard indicial notation

as,
(Eijk1up,1 * @Mlauy i + we (8531 5 + PFy =Py + — Poiiy (1)
1 S T .
[M(auk’k + wk,k)],i + —f- Pyf; = "%:- Pou; + 2 Povis +— w; (2)

where Usy Wy, fi, Eijk] denote the cartesian components, respectively,
of the solid displacement vector, the relative fluid displacement vector,
the body force vector per unit mass and the isothermal elasticity
tensor. P is mass density of the saturated soil and P, that of water per
unit bulk volume. f, K, @, M are, respectively, the porosity, the perme-
ability, the solid compressibility and the fluid compressibility. The
superposed dot implies a time derivative. A1l the functions are defined
over the cartesian product R x [0,e0) where R is the spatial region of
interest and [0,9) is the positive interval of time. With these field

equations, we associate the following boundary conditions.

Ui (t) = uj(t) on Sy (3)

PREVIOUS PAGE
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= Tig" = Eijali,n * amdiyny =ty on Sy, (4)

m(t) = Ma Ut wk,k) =m(t) on Sq (5)
N

Wo(t) = wi(t) on S, (6)

where S.., S
1i

spatial region of interest and so are 53, 54, The initial conditions for

0y are complementary subsets of the boundary S of the

the problem are given by:

c
—
1
»
o
g”
]

u,{x)




SECTION III
FINITE ELEMENT FORMULATION

3.1 SPATIAL DISCRETIZATION

Spatial discretization, APPENDIX A, of the governing equations for

the two-field formulation leads to the following matrix equations;

+ + = (7)

T : T .
Ker  Keg 1" 0 Cgp) (W Mg Meg) LW R¢

The development of these vectors and matrices is given in Appendix A.
These equations assume no inherent damping in the system as a whole.

The only damping component is associated with relative motion.

Ghaboussi and Wilson (12) introduced damping as a linear combination

of the stiffness and the mass matrix in the following form;

Cos= a1(Mgg = 2 Meg) + ap(Kgg - o Keg) (8)

where a,, ap are constants and f, @ have been defined in SECTION II.

The structural damping matrix 1is a linear combination of the mass and
the effective stiffness of the soil. Comparing with Equation (1), (Kss‘
O?Kff)u corresponds to (Eijkluk,l),j- The quantity M., corresponds to
Pin Equation (1) and Mee to F%/fz in Equation (2). Hence, Mss‘szff

corresponds to P,
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3.2 TIME DOMAIN INTEGRATION

The discretized equations of motion, Equation (7) can be rewritten as

MU + CU + KU = R (9)
in which

v Mss Msf Css 0

U= M= C=
T
W Mor Mes 0 Cgs
sS st Rs
K= R = (10)
T
Kee  Kgg Re

Wilson's B -y- @ algorithm was used to integrate the equations of mot-

ion. In summary, the algorithm works as follows.

The displacements and velocities at time tn+ ® At can be expressed in

terms of U, U, U at time t as

(o=
n

o 2 2 2 2
nve = Up *OAtU + (1/2-B) 6°(At)° U +B6°(AL)° U, (11)

Ce

0+ (1-Y)0Acﬁn + y@ALi (17,

n+@ nt+l

in which Band ¥ are Newmark ' coetticients (b)),
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* *
KUire = Rnse (13)
in which
K* K + —2——--2-l M Y C
= +
B8 (At) BoAt
R =R . 4 e Ma .. + ——— Cb
ntg n+d m n+e 86 At n+e o

Y]
]

) : 2 2.0
n+o Un + eAtUn + (1/2-B8) 8°( At) U,

2

» 2 o

bn+9 Up + (1-B/y )8 AtU_ + (1/2- B/Y )8°( At) U,
Assuming cubic expansion of nodal point displacement over a time
interval in terms of displacement, velocity and acceleration at time tn’

the displacement, velocity and acceleration at time tn + At can be ex-

pressed as

1 1 1 . 1 2y
™ g3 e U1 gt T U7 ) By v - (anT

IJn+1 ) 2;'32'_—? (Upsg = Yg) + (1 - ég?)ﬁn + (- ég;) tUn (15)

87 (At)
U+1=—'§'I‘T(U+o'u)' ; l.Jn"(l"_l‘)ﬁn
n 8°(At) n " et 280




b8 S 2 N4 - (S - Aadhn LAt B sadh 30t S AR aras g Srue o -

10

Various values for b and O can lead to various integration schemes (12).
For 8 = 1, the stability of the3- y method has been examined. Zienk-

iewicz (23) gives the following criteria for the undamped response of a

11

linear system.

Y > 1/2

]
Sl

B> 1/4(1/2 + y)°2 (16)

1/2 + B+y2 0




SECTION 1V

EXAMPLE PROBLEMS

o 4.1 INTRODUCTION o

e Several examples with known analytical solution were solved to check o
the validity of the method and the correctness of code. These examples

included

a. Quasi-static soil consolidation
b. Dynamic response of an elastic layer of single material wE

c. Response of a fluid-saturated soil layer

- A1l the problems deal with compressional wave propagation in an initial-
ly undisturbed, homogeneous, isotropic, elastic, porous or non-porous
system to dynamic loading. The system for ¢ above was subjected to spa-

IE tially uniform surface traction q(t) as shown in Figure 1. Solution for
non-porous media was accomplished by prescribing relative displacement

fﬁ between soil and fluid to be zero.

4.2 QUASI-STATIC PROBLEM OF SOIL CONSOLIDATION

,? The quasi-static consolidation problem was solved by setting density
and damping equal to zero. The example problem selected for cmparison Gl
was the one solved earlier by Sandhu (20). Excellent agreement was ob-

served between the present solution and the one obtained (20) using a

................
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13
quasi- static consolidation analysis computer program based on the 8-4

element.

4,3 DYNAMIC RESPONSE OF AN ELASTIC BAR OF SINGLE MATERIAL

An etastic layer under spatially uniform excitation applied to its
surface can be regarded as an elastic bar, constréined in its lateral
dimensions and subjected to excitation at the free end. A representative
segment of the layer, equivalent to a laterally restrained bar, is shown

in Figure 2. The characteristics used in the finite element model were;

Total length L = 500 mm
Number of nodes = 51
Number of elements = 50
Length of each element = 10 mm

Modulus of elasticity E = 20000 kg/mm2

Poisson's ratio v=0

Density p = 0.0008 kg.m.secz/mm4

Wave velocity Co = [(2n+A)/P ]1/2 = 5000 mm/msec
Time interval At = 0.002 msec

Number of time steps = 50

where u, \ are Lame's constants. The following two different conditions

at the free end were considered.

a. STEADY STATE RESPONSE

A sinusoidal loading in the form

q(*) = % sin(40mt) (19)




(e

6 Figure 2:

q(t)

No Lateral
“”";;;;7 Displacements

7/

4

V4

Segment of an Layer Subjected to Dynamic Loading

~—vry




) 15
j; was applied to one end of the bar with the other end fixed.

E b. RESPONSE TO STEP LOAD

A load was suddenly applied and allowed to stay, i.e.

- q(t) = 9% H(t) =PC° H(t) (20)
; where H{t) is the Heaviside function. It should be noted that the load-
= ing in Equation (20) will induce a unit particle velocity (1). Several
values for B, ¥, © were used to obtain the optimum solution. The ana-
lytical solution for this problem which contains both the harmonic and
“ the transient solution is given in reference (9).

4.4 RESPONSE OF A FLUID-SATURATED SOIL LAYER (Garg's Problem)

The third example considered was that of a fluid-saturated porous
soil layer, The finite element mode! had the same characteristics as

used by Garg (11), i.e.,

)
) Total length L =50 cm
Number of nodes = 5]
Number of elements = 50
Length of each element =1cm
Modulus of elasticity E = 0.2319x1012 dyn/cm?
‘ Poisson's ratio v=20,171
;: Mixture mass density p=2.3612 gm/cm3 . ;
- Fluid mass density A= 0.18 gm/cm3 ‘;-}
5 Porosity f =0.18 2
) Fluid compressibility M = 0.102x1012 gyn/cm® ;:5
.




Lower bound of wave
velocity 354875 cm/sec

Upper bound of first kind
wave velocity 358193 cm/sec

Upper bound of second kind
wave velocity 127941 cm/sec

The velocities Co’ C., C_ were defined by Biot (2) and Garg (11). Using

+)

the notation of this report, these quantities are given by the following
expressions (11).

2

(A+ 20+ " M)/p

(A+ 20+ M(a-)?)/ B,

ey P,
= Mf(a-f)/ P,

Mf(a-f)/ P,

2
1

2

1/2
211

CS + Cg i_L(Cf - C2)2 + 4C2

2 12

Here, pl =p- pz is the bulk mass density of the soil. These velocities
are applicable to one-dimensional compressive wave propagation. A unit

particle velocity for each phase was imposed at the free surface, i.e.,

u(L,t) = H(t) (21)

wilL,t) = (22)




17
Equation (22) implies strong coupling at the free surface. In reality,
this may not be true. However, for the purpose of comparison with Garg,
the same assumptions were made. As reported by Garg et el. (l1), as
permeability K — 0, the relative motion between the two constituents
vanishes and phase velocity C - Co . This is termed “strong coupling”.
In this case the material behaves as a single continuum whose properties
are combination of those of the two constituents. On the other hand, as
K —oo, the coupling between the two constituents vanishes and ¢ = C,
. This extreme is termed "weak coupling". The boundary condition given
by Equation (21) can be replaced by the traction boundary condition,
while the boundary conditions expressed by Equation (22) can be replaced

by the displacement boundary condition, i.e.

q(L,t) = PCH(t) (23)

w(lL,t) = 0 (24)

where q(L,t) is the traction applied to the free surface. The numerical
values for the permeability and the time steps corresponding to strong

and weak couplings were;

a. Strong Coupling (Low Permeability)
K = 0.148x1078 cm3/gm sec
At = 1 micro sec

Number of time steps = 50

b. Weak Coupling (High Permeability)
K = 0.148x1072 cm3/gm sec

At = 2.4 micro sec
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Number of tme steps = 50

4.5 RESPONSE OF A FLUID-SATURATED SOIL LAYER (Ghaboussi's Problem)

The fourth example was the problem solved by Ghaboussi

(12). They did not compare the numerical solution with any analytical

solution. The problem considered was a fluid-saturated half space sub-

jected to a unit step-loading.

ing properties.

Total length

Number of nodes

Number of elements
Length of each element
Modulus of elasticity
Poisson's ratio
Mixture density

Fluid density

Porosity

Fluid compressibility
Solid compressibilty
Wave velocity for the
mixture (no relative
motion)

Coefficient of permeability

Time interval

Generally, the solid density of soil falls between the ranye of 2.0~ 2.7

(gm/cm3) and the compressibility of pure water is 2.0x1010 (dyn/cmz).

Thus, it should be noted that mixture density and the flutd compressibi-

—
[} n

]

=

< m
i ]

©
"

-
1}

x4
"

K =

The finite element model had the follow-

50 ¢cm

51

50

1 cm

0.2319x1012 dyn/cm?
0.171

3 gm/cm3
= 0.18 gm/cm®

0.18

90x1011 dyn/cm?

1

- [(2m + A+ a2m)/p 112
= 1.755895x10% cm/sec
0.19x107% cm/sec

At= 1 micro sec

and Wilson
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lity given above are far from real soil properties, but were taken to
match the problem solved by Ghaboussi and Wilson (12). Reference (12)did
not give any values for k and f. Assigned value of k is for the mixture

of very fine sand and silt and f is for very dense state.




SECTION V
RESULTS OF THE ANALYSES

5.1 QUASI-STATIC PROBLEM OF SOIL CONSOLIDATION

The results for the present analysis and those obtained by Sandhu
(20) coincided as expected. Detailed results of the analyses were as re-
ported in reference (22) for the problem of one-dimensional consolida-

tion showed using Ghaboussi's 4-4 element.

5.2 DYNAMIC RESPONSE OF AN ELASTIC LAYER OF SINGLE MATERIAL

Figures 3(a) through 3(f) and Table 1(a) thru 1(c) illustrate the
stress response of an elastic bar, fixed at one end and subjected to si-
nusoidal loading at the free end at time stages 0.012, 0.038, 0.05,
0.064, 0.088 and 0.10 seconds. The exact solution (9) for the problem

is, for applied load q(t) = qosin(401rt),

a. Displacement:

uly,t)= > [6(8,) - 6($,,)] (25)
n=0
b. Stress:
E
O(y,t)= - — D [6'(8,) + 6B, )] (26)
C
b n=0
21
.Rt.x?L(:SN?ct o
S e e L N RS e
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Figure 3: Stress Distribution in an Elastic Layer
Subjected to Sinusoidal Load at Free
Surface. (a) Time=0.012 second.
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Figure 3: Stress Distribution in an Elastic Layer
Subjected to Sinusoidal Load at Free
Surface. (b) Time=0.038 second.
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Figure 3: Stress Distribution in an Elastic Layer
Subjected to Sinusoidal Load at Free
Surface. (d) Time=0.064 second.
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Figure 3: Stress Distribution in an Elastic Layer —
Subjected to Sinusoidal Load at Free S
Surface. (e) Time=0.088 second )
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Figure 3: Stress Distribution in an Elastic Layer S
Subjected to Sinusoidal Load at Free -
Surface. (f) Time=0.100 second. -
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TABLE 1

Stress Distribution in an Elastic Layer of Single Material Subjected to
Sinusoidal Load at Free Surface. (a) Time= 0.012 and 0.03 second
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TABLE 1 -
{ Stress Distribution in an Elastic Layer of Single Material Subjected to :*
Sinusoidal Load at Free Surface. (b) Time= 0.05 and 0.064 second
......................... o] -
y/L t=0.05 sec t=0.064 sec
""" FEM  EXACT | FEM  EXACT |
[ 0.01 | o0.4820x10-18 0,0 | o0.3s08a0- 0.0 | -
o | 6i9353115215""6f6""l'6?158521637 """" 0.0
021 | 0.8188x10-10 0.0 | o.2138a074 6'6"";
(031 | 0.397 x10-6 0.0 | 0.944sxi0-2 0.0 ,
Y T 0.5878 | -
051 | o033 0.1263 | 0.9235 0.951 |
{ (0.6 | 0.9983 0.9823 | 0.2535x10-1 0.0
(0.71 | o.a788 0.4828 | -0.9523  -0.9510]
oo [ oes o Lo 0w
0.91 -0,911 -0.9048 | 0.5883 0.5878 -
EENEE -1.2583 | 0,997 0.9980 | 2
............................................................. d-

.....................................................
..................................................
..............................................

................................
.......................
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TABLE 1

Stress Distribution in an Elastic Layer of Single Material Subjected to
Sinusoidal Load at Free Surface. (c¢) Time= 0.088 and 0.1 second

PRSI SR I




TR W TR TR & W WU e LT TR T e T

31

where

- t
G(t)= C, /e foq(t) at

[« ]
1]

t - (2nL+L-y)/Cp

2
1]

t- (2nL-L+y)/Cb

dG

d¢

G' ()

G(8,) =0 where 6,< 0

Cg = E/p (wave velocity of bar)

The numerical solution was based on values of 9, = -4, in addition to
those given in section 4.3. The investigation parameters 8, ¥, 6 were
set equal to 0.25, 0.5, 1.0, respectively. These values satisfy Equation
(16). In Figures 3(a) through 3(f), we see good coincidence between the
finite element solution and the analytical solution throughout the spa-
tial as well as the temporal domains. At the point of y/L=0.99, the
percentage error at t=0.03 and 0.05 second was 4.6 and 5.4

,respectively. But at the other time stages it was less than 1.0%.

Figures 4(a) thru 4(c) and Table 2(a) thru 2(c) 1illustrates the dis-

placement, velocity and stresses along the elastic layer under unit step
load at the free surface, at time t = 0.08 sec, i.e. after 40 time in-

crements. The results were obtained for two different time integration

| J
‘
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.................
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Figure 4: (a) Displacement Distribution in an Elastic
Layer under Unit Step Load at Free Surface
at Time=0.08 second. Influnece of choice
of Parameter 8.
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Figure 4: (b) Velocity Distribution in an Elastic
Layer under Unit Step Load at Free Surface
at Time=0.08 second. Influence of choice
of Parameter B.
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(c) Stress Distribution in an Elastic
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TABLE 2

(a) Displacement Distribution in an Elastic Layer under Unit Step Load
at Time=0.08 sec. Influence of Parameter 8.
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TABLE 2

{b) Velocity Distribution in an Elastic Layer under Unit Step Load at

Time=0.08 sec. Influence of Parameter S.
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TABLE 2

‘ (c) Stress Distribution in an Elastic Layer under Unit Step Load at
Time=0.08 sec. Influence of Parameter 8.




schemes and compared with analytical solution (1,9). The first scheme
used 8 = 1.0, B= 0.5, Y=0.167, and the second 8 = 1.0, B= 0.5, ¥=
0.25. It is shown from Figure 4 Table 2(a) that both schemes give the
almost same displacement response with about 3 error against the exact
solution. However, B= 0.167 was better for velocity and B= 0.25 better
for stress distribution. Despite this fact, large error around wave
front was still observed and numerical results were not reliable. The
oscillatory error may be overcome by increasing ¥ and using the corre-
sponding value of B from Equation (17) as we shall see in the next exam-
ple. For this problem, one-dimensional linear element (called 1-1 ele-
ment) was used and CPU time on the AMDAHL 470/V8 Computer was 15.18
seconds for sinusoidal 1loading and 15.4 seconds for unit step loading,

respectively.

5.3 RESPONSE OF A FLUID-SATURATED SOIL LAYER (Garg's Problem)

In order to investigate the effect of fluid-soil interaction on wave
propagation, two different values of the permeability coefficient were
selected to approximate "strong" and ‘"weak" coupling extremes described
by Garg (11). Figures 5(a) and 5(b) and Table 3(a) and 3(b) show the ve-
locity for both the solid and the fluid at 10cm from the traction bound-
ary. The numerical results are based on calculations with® =1, 8=
0.6, Y= 0.3025. Reasonable agreement is seen between the finite element
and the analytical solutions. But while the exact solution has the sharp
discintinuity in the wave front, numerical was diffused. A single wave
front exists. The wave is propagating with velocity = C,, and the solid

velocity is the same as the fluid velocity. This is because, for this
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Figure 5: (a) Garg's Problem for Strong Coupling; =
Velocity History of the solid at 10cm -
from the Tractron Boundary.
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Figure 5: (b) Garg's Problem for Strong Coupling;
Velocity History of the Fluid at 10cm
from the Traction Boundary.
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< TABLE 3
Velocity History of Garg's Problem at 10cm from the Traction Boundary =
for Strong Coupling. e
[Tine | solid (c/sec) | Fluid (cm/sec) 1 )
sec) | rem [ exacr | rem | ExacT
T0.001  |0.1879x10°7 | 0.0 |-0.1479%307 | 0.0 | -
I T N il O -
(T0.015  Fo.7322x1072 | 0.0 |-0.7322x1072 | 6?6"':
0.0z [o.1861x1072 | 0.0 |-0.1861x1072 | 0.0
T0.025 [o.1888 Y -0.1888 | 0.0 ]
“0.026  |0.a125 | 0.0 | oazs | 6?6’"'j
0.027 |o.6488 B 0.6888 | 0.0
o028 |0.793 | 0.0 | 0.7939 | 0.0 ] :
0.030 [|0.8848 o o.ssas | 10 -
0.035  |1.036 | 1.0 | 1.3 | 1.0 | 3
I I N B
0.045 1.0505 1.0 1.0505 1.0 :
o (Lo T e T o e
L cmmcmcm—e L e ccccccccaca. e . cedeconccnnccned
A T T e T T <l N T T T




A AT SRPTRAT A E R WAL

42

problem, relative velocity w approaches zero and the two constituents

effectively act as a single continuum.

Figures 6(a) and 6(b) demonstrate the results of other extreme viz,
“weak" coupling. The values of 8, ¥, B were the same as for the "strong"
coupling. The results for a station 10 cm away from traction boundary (y
= 40cm) are quite close to Garg's analytical solution (11). Existence

of two wave fronts travelling with speeds C_ and Co is noticed.

Pore pressure distribution at 11 fferent times for the two extremes of
"strong" and “weak" coupling are plotted in Figure 7(a) and 7(b). A sin-
gle phase description is seen in Figure 7(a), in which the pressure wave
is propagating with speed C, . Figure 7(b) clearly demonstrates the exis-
tence of two waves travelling with speed C_ and Cyr in the fluid and the
solid, respectively. The above results were obtained by 1-1 element.
CPU time was 15.68 seconds for weak coupling analysis and 15.4 seconds

for strong coupling.

5.4 RESPONSE OF A FLUID-SATURATED SOIL LAYER (GHABOUSSI'S PROBLEM)

Figure 8 presents the response of a saturated layer to a unit step
loading. Solution of this problem was attempted by Ghaboussi and Wilson
(12). However, their results, were criticized by Garg (11), and do not
agree with the plot in Figure 8 (Table 5). In this figure, the non-di-
mensional pore pressure anois plotted against y* = y/( KCy). For a=1
and M - xthe pore pressure should be equal to the applied traction.
Ghaboussi and Wilson (12) reported figures which do not match Figure 8.

With 1-1 element, CPU time for the problem was 12.35 seconds.
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Figure 6: (a) Garg's Problem for Weak Coupling;
Yelocity History of the Solid at 10cm
from the Traction Boundary.
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TABLE 4

Velocity History of Garg's Problem at 10cm from the iraction Boundary
for Weak Coupling.

Time Solid (cm/sec) Fluid (cm/sec) J
(sec) | FEM | EXACT |  FEM |  EXACT
(00024 |-0.2000x108 | 0.0 | -o.526ax10-7 | 0.0 |
0.0096 | 0.1848x10°0 | 0.0 | -0.1180x10° | 0.0 |
(0.0192 | 0.4323102 | 0.0 | 0.1890x10-2 | 0.0 |
0.0312 | 0.9575x10-2 | 1.0 | 0.4078 | 0.5 |
0.0808 | 1.0527 | 1.0 | o.aazs | 0.5 |
(0.0504 | 1.0760 | 1.0 | 0.3 | 0.5 |
0060 | 1.086 | 1o | o.asse | 05 ]
0.696 | 1.0807 | 1.0 | 0.4720 | 0.5
’6?6555"'['I?68§5 """""" 1.0 | o.ses2 | 1.0 |
0.0012 | 1.0577 | 1.0 | L.ozeo ] 1.0 |
0008 | 1.oses ] 1o ] Loars | 1a]
e pommmeomeoaee- o R S P, 5 P, 4

0.1104 1.0560 1.0 1.0555 1.0
'BTIEB""t'IﬁBEEE"""'""Ifa"""'1?6525"""'""'ITB"'




GARG PROBLEM(STRONG COUPLING)

gl
o
o
o O
E —
LN
(Ul
o :
o : : : : : : :
, | ~— T
0.00 0.25 0.50 0.75 1.00
y/L
u] TIME=24Y4 MICRO SEC
[u] TIME=48 MICRD SEC
a TIME=72 MICRO SEC
+ TIME=96 M]ICRO SEC
X TIME=120 MICRQ SEC

Figure 7: Pore Pressure Distribution at Various
Times for Garg's Problem. (a) Strong
Coupling.




L 47

GARG PROBLEM (WERK COUPL ING!

0.30

S o TAVANAVLS a5 L o v v v v

w/qo

- eyl "
__‘,*J—l
0.75 .00
Y/L e
ui TIME=24 MICRO SEC SRS
TIME=4Y8 MICRO SEC
& TIME=72 MICRO SEC T
+ TIME=96 MICRO SEC :
X TIME=120 MICRO SEC K
Figure 7: Pore Pressure Distribution at Various _
times for Garg's Problem; (b) Weak Coupling. :




............

TABLE §

Pore Pressure hr/qg Distribution of Garg's Problem
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SECTION VI

CONCLUSIONS

Galerkin finite element method was used along with the 8-Y-8 algor-
ithm to set up numerical scheme for investigating wave propagation
through saturated porous media. Several problems with known analytical

solutions were analyzed. Results of the analyses indicate the following:

1. The integration parameters g8, yand 8 should be carefully selected

to avoid oscillatory error.

2. The scheme, with proper selection of 8, ¥ and 9, showed exellent

agreement with the analytical solutions.

3. The numerical and analytical results show the importance of the
role of permeability in single or double phase description for fluid-
saturated porous media. For low permeability, there is little relative
motion and the strong coupling on single material description would be

valid. For high permeability, the two phase description is necessary.

4. The computer code was checked only for one-dimensional problems.
Its effectivenes for two-dimensional (plane strain) problems is yet to

be established.

5. Further investigation in the choice of damping matrices is re-
quired. The solution process for a few idealized problems has been
checked, but the assumptions regarding various couplings may not repre-

sent actual soil behavior,
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6. The computer code implemented Ghaboussi and Wilson's version of
Biot's theory. The entire fluid mass is expected to be in relative mo-
tion. In other theories, an interaction mass is introduced. This would
imply a ‘"partial" coupling somewhere between the "strong" and "weak"
coupling defined by Garg (11). Work 1is needed to quantify the coupling
and to aliow for this in the computer code by suitably defining mass ma-

trices.

7. The computer code needs to be extended to propagation of shear
waves and Love and Rayleigh waves. Studies are needed to allow for re-
flection and refraction of waves at interfaces or boundaries. Dynamics
of nonhomogeneous, anisotropic and nonlinear soils needs to be investi-

gated.
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Appendix A

SPATIAL DISCRETIZATION

In this appendix, we present the spatial discretization of the equa-
tion of wave propagation through saturated porous media using Galerkin's

method.

A.1 WEAK FORMULATION

A weak form for Equation (1) is;

v

- -%-P,_'vii} g/;Mdv =0 (A-1)
where '¢M is a test function. Equation (A-1) can be rewritten as

M M 2 M
(s 5019 0% )5 - Eigat,1 w,5 * (@7 850 00
v

2 M M M
-aM 61Juk,k ¢’j + (a M 8ijwk,k ¢l ).j -aM Sijwk’k ¢ ’j
s(pf. -pi. - Lo av=0 (A-2)
1 1 21

f

Using Gauss theorem on the first, the third and the fifth terms,
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_[[E u , +aMb..u . taMB W ]l,an ds + _/t;fdev
ijk 17k,1 iJk,k ijk,k J j
S '
= M 2 M M
‘f[Eijm“k,l Yogta Mdu (W5 raMbw Y
v
v (e, + o) o™ v (A-3)
i f27i
where n; are the components of the outward unit normal to S. The total
stress tensor is defined as (4)
_ 2
Hence, Equation (A-3) can be rewritten as
f'C..n. W ds +ff. o av
ij5 v !
S
- M 2 M M
= f[Eijk]uk,l Yot MBu W5t aM bW Y
v
v (ph. + L o) M dv (A-5)
M f 21
From the boundary conditions, Equations (3) and (4), we have ‘
M_
Y =0 on S, (A-6)
Substituting Equations (A-6) and (A-7) into Equation (A-5),
R D SR e e A T e L R
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A~ M M _ M 2 M
‘éz-ti ¥ ds + ffi ¢ dv = f[Eijk]uk,] q/z’j + (@M aijuk,kw,j
i v v
|
’ M v . M
+aM sijwk,k ¢’J. + (P + ‘%'pz Wi) ¢ dv (A-8)
= Similarly, a weak form for Equation (2) is
_ 1 1, 1 .. .
v
where ¢” is a test function. Equation (A-9) can be rewritten as
~ M M
3 -
Jioma Ukt Wk) B s Mauy ot )@

v
1 1 e 1. Coa M
+ ?-szi - ?qui - ¥?P2W1 - C1JwJ]¢ dv = 0 (A-].O)

Noting that the pore pressure is given by (3) as

)] T=Mau, . + w,
i,

i 1,1) (A-11)

and using Gauss theorem on the first term, Equation (A-10) can be

written as

1 M
‘/“ﬂ'nqi ¢M ds +f-FP2f,. ¢ dv
S v

= M 1. P . . M
= f[M(a Uy K + "k,k) q:o,’. + ('f-pZUi + f—% Wy o+ cijwj) @] dv (A-12)
v

h where n; are components of the outward unit normal to S. Equations (5)

and (6) for =0 are

-----




¢ =0 on S, (A-~13)

"
>
=)

7rnj on S3 (A-14)

Hence, Equation (A-12) may be written as
A M 1 M
fﬂni¢ ds *f?' szitb dv
v
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A.2  GALERKIN APPROXIMATION

For a typical element, the local solid and relative fluid displace-

ments are approximated by

oMx) of (A-16)

=4
n

X
[}

o(x) Wl (A-17)

where I,llN and ¢>N are interpolating functions defined over the finite

element and uN, wN

jo Wy are the values of solid and fluid displacements at

the node N,

Substituting from Equation (A-16), (A-17) into Equation (A-8) gives
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& N N M No |1 Ny M
- +“M51‘j¢,k wk./;,j+(P(/I u1.+-f-P2¢ wi)w]dv (A-18)
Define
| A M f M, M
- _[tilﬁ ds + [ f. ¢ dv = F_, -
- 2i v '
N M 2 M N _ ,NM .
JtEia % Vit o M ¢ dv = Kok
v s
N M _NM :
v f
;o v
1, N M . _ NM s
" R LA AN
- v i
Substituting Equation (A-19) into (A-18), .:,:;:
» M N, NM N NM LN L NM N M .4
Kssik Uk * Kspik W + Mg U * Mgp Wy = Fy (A-20)
Similarly, substituting from Equation (A-16),(A-17) into Equation (A-15) .
MA 1 M
_4'¢1rn1. ds+f-f—02f1.¢ dv |
3 v ::
. N M N N OMONL [ N oN M
-fM a'/',kd’,i Uy +.[M¢,k¢,i W +f? lell uicp dv e
v v v B
1 N=N M M NaN
+‘/; apzdi wic’ dv + Cij¢ ¢wj dv (A-21) .
v -
Define :-:T_\_
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b N M _ NM
s SHa Yk ®,5 9V = Ksgi
: v

NOM . NM
f” P® v = Kegys
v

1 N M NM
f?. o, N o av = wl (A-22)

v
1 N M NM
v

N M M
Jrcjk‘P ¢ v = Cegsy
v

Substituting Equation (A-22) into Equation (A-21)

M _ _NM N NM N NM -N NM N NM N
Pr5 = Kstkg Uk * Kekg Mt Msr Uy ¢ Mep WG4 Copgion (A-23)
Equations (A-20) and (A-23) can be written in matrix form as
Kss st u 0 0llu MSS MSf u FS
+ + = (A-24)
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